
1

The Many Faces of Instrumentation:

Debugging and Better Performance using LLVM in HPC

✔ What are LLVM, Clang, and Flang?

✔ How is LLVM Being Improved for HPC.

✔ What Facilities for Tooling Exist in LLVM?

✔ Opportunities for the Future!

Protools 2019 @ SC19
2019-11-17

Hal Finkel
Leadership Computing Facility
Argonne National Laboratory

hfinkel@anl.gov

mailto:hfinkel@anl.gov

2

Clang, LLVM, etc.

LLVM/Clang is both a research platform
and a production-quality compiler.

✔ LLVM is a liberally-licensed(*) infrastructure for creating
compilers, other toolchain components, and JIT
compilation engines.

✔ Clang is a modern C++ frontend for LLVM
✔ LLVM and Clang will play significant roles in exascale

computing systems!

(*) Now under the Apache 2 license with the LLVM Exception

3

What is LLVM:

LLVM is not a “low-level virtual machine”!

LLVM is a multi-architecture infrastructure for
constructing compilers and other toolchain
components.

LLVM IR Architecture-independent
simplification

Architecture-aware
optimization

(e.g. vectorization)

Backends
(Type legalization,

instruction selection,
register allocation, etc.)

Assembly printing,
binary generation, or

JIT execution

4

What is Clang:

Clang is a C++ frontend for LLVM...

C++ Source
(C++14, C11, etc.)

Parsing and
semantic analysis

LLVM IR

Code generation

Static analysis

● For basic compilation, Clang
works just like gcc – using
clang instead of gcc, or
clang++ instead of g++, in
your makefile will likely “just
work.”

● Clang has a scalable LTO,
check out:
https://clang.llvm.org/docs/ThinLTO.html

https://clang.llvm.org/docs/ThinLTO.html

5

The core LLVM compiler-infrastructure components are one of the subprojects in the LLVM project.
These components are also referred to as “LLVM.”

6

What About Flang?

● Started as a collaboration between DOE and
NVIDIA/PGI. Now also involves ARM and
other vendors.

● Flang (f18+runtimes) has been accepted to
become a part of the LLVM project.

● Two development paths:

Flang based
on PGI’s
existing

frontend (in C).

Production
ready including

OpenMP
support.

f18 – A new
frontend
written in

modern C++.

Parsing,
semantic

analysis, etc.
under active

development.

Fortran
runtime

library and
vectorized

math-
function
library.

LLVM Project

7

What About MLIR?

● Started as a part of Google’s TensorFlow
project.

● MLIR will become part of the LLVM project.
● MLIR is built around the simultaneous

support of multiple dialects.

Frontends

TensorFlow,
Flang,

etc.

LLVM

MLIR LLVM
Dialect

OpenMP
IR Builder

MLIR OpenMP
Dialect

MLIR
Fortran Dialect

MLIR
Linear-Algebra

DIalect

8

Clang Can Compile CUDA!

$ clang++ axpy.cu -o axpy --cuda-gpu-arch=<GPU arch>

For example:
--cuda-gpu-arch=sm_35

When compiling, you may also need to pass --cuda-path=/path/to/cuda if you didn’t install the CUDA
SDK into /usr/local/cuda (or a few other “standard” locations).

For more information, see: http://llvm.org/docs/CompileCudaWithLLVM.html

● CUDA is the language used to compile code for NVIDIA GPUs.
● Support now also developed by AMD as part of their HIP project.

Clang's CUDA aims to provide better support for modern C++ than NVIDIA's nvcc.

http://llvm.org/docs/CompileCudaWithLLVM.html

9

Existing LLVM Capabilities

● Clang Static Analysis (including now integration with the Z3 SMT solver)

● Clang Warnings and Provided-by-Default Analysis (e.g., MPI-specific warning messages)

● LLVM-based static analysis (using, e.g., optimization remarks)

● LLVM instrumentation-based checking (e.g., UBSan)

● LLVM instrumentation-based checking using Sanitizer libraries (e.g., AddressSanitizer)

● Lightweight instrumentation for performance collection (e.g., Xray)

● Low-level performance analysis (e.g., llvm-mca)

These are not really MPI specific, but uses the “type safety” attributes inspired by this use case:

int MPI_Send(void *buf, int count, MPI_Datatype datatype)

 __attribute__((pointer_with_type_tag(mpi,1,3)));

…

#define MPI_DATATYPE_NULL ((MPI_Datatype) 0xa0000000)

#define MPI_FLOAT ((MPI_Datatype) 0xa0000001)

…
static const MPI_Datatype mpich_mpi_datatype_null __attribute__((type_tag_for_datatype(mpi,void,must_be_null))) = 0xa0000000;

static const MPI_Datatype mpich_mpi_float __attribute__((type_tag_for_datatype(mpi,float))) = 0xa0000001;

See Clang's test/Sema/warn-type-safety-mpi-hdf5.c, test/Sema/warn-type-safety.c and

test/Sema/warn-type-safety.cpp for more examples,

and: http://clang.llvm.org/docs/AttributeReference.html#type-safety-checking

http://clang.llvm.org/docs/AttributeReference.html#type-safety-checking

10

MPI-specifc warning messages

These are not really MPI specific, but uses the “type safety” attributes inspired by this use case:

int MPI_Send(void *buf, int count, MPI_Datatype datatype)

 __attribute__((pointer_with_type_tag(mpi,1,3)));

…

#define MPI_DATATYPE_NULL ((MPI_Datatype) 0xa0000000)

#define MPI_FLOAT ((MPI_Datatype) 0xa0000001)

…
static const MPI_Datatype mpich_mpi_datatype_null __attribute__((type_tag_for_datatype(mpi,void,must_be_null))) = 0xa0000000;

static const MPI_Datatype mpich_mpi_float __attribute__((type_tag_for_datatype(mpi,float))) = 0xa0000001;

See Clang's test/Sema/warn-type-safety-mpi-hdf5.c, test/Sema/warn-type-safety.c and

test/Sema/warn-type-safety.cpp for more examples,

and: http://clang.llvm.org/docs/AttributeReference.html#type-safety-checking

These are not really MPI specific, but uses the “type safety” attributes inspired by this use case:

int MPI_Send(void *buf, int count, MPI_Datatype datatype)

 __attribute__((pointer_with_type_tag(mpi,1,3)));

…

#define MPI_DATATYPE_NULL ((MPI_Datatype) 0xa0000000)

#define MPI_FLOAT ((MPI_Datatype) 0xa0000001)

…
static const MPI_Datatype mpich_mpi_datatype_null __attribute__((type_tag_for_datatype(mpi,void,must_be_null))) = 0xa0000000;

static const MPI_Datatype mpich_mpi_float __attribute__((type_tag_for_datatype(mpi,float))) = 0xa0000001;

See Clang's test/Sema/warn-type-safety-mpi-hdf5.c, test/Sema/warn-type-safety.c and

test/Sema/warn-type-safety.cpp for more examples,

and: http://clang.llvm.org/docs/AttributeReference.html#type-safety-checking

http://clang.llvm.org/docs/AttributeReference.html#type-safety-checking
http://clang.llvm.org/docs/AttributeReference.html#type-safety-checking

11

Optimization Reporting - Design Goals

To get information from the backend (LLVM) to the frontend (Clang, etc.)

✔ To enable the backend to generate diagnostics and informational messages for display to users.

✔ To enable these messages to carry additional “metadata” for use by knowledgeable frontends/tools

✔ To enable the programmatic use of these messages by tools (auto-tuners, etc.)

✔ To enable plugins to generate their own unique messages

See also: http://llvm.org/docs/Vectorizers.html#diagnostics

http://llvm.org/docs/Vectorizers.html#diagnostics

12

Sanitizers

The sanitizers (some now also supported by GCC) – Instrumentation-based debugging
● Checks get compiled in (and optimized along with the rest of the code) – Execution speed an order of

magnitude or more faster than Valgrind
● You need to choose which checks to run at compile time:

● Address sanitizer: -fsanitize=address – Checks for out-of-bounds memory access, use after free, etc.:
http://clang.llvm.org/docs/AddressSanitizer.html

● Leak sanitizer: Checks for memory leaks; really part of the address sanitizer, but can be enabled in a
mode just to detect leaks with -fsanitize=leak: http://clang.llvm.org/docs/LeakSanitizer.html

● Memory sanitizer: -fsanitize=memory – Checks for use of uninitialized memory:
http://clang.llvm.org/docs/MemorySanitizer.html

● Thread sanitizer: -fsanitize=thread – Checks for race conditions:
http://clang.llvm.org/docs/ThreadSanitizer.html

● Undefined-behavior sanitizer: -fsanitize=undefined – Checks for the execution of undefined behavior:
http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

● Efficiency sanitizer [Recent development]: -fsanitize=efficiency-cache-frag, -fsanitize=efficiency-working-
set (-fsanitize=efficiency-all to get both)

And there's more, check out http://clang.llvm.org/docs/ and Clang's
include/clang/Basic/Sanitizers.def for more information.

http://clang.llvm.org/docs/AddressSanitizer.html
http://clang.llvm.org/docs/LeakSanitizer.html
http://clang.llvm.org/docs/MemorySanitizer.html
http://clang.llvm.org/docs/ThreadSanitizer.html
http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
http://clang.llvm.org/docs/

13

Address Sanitizer

http://www.llvm.org/devmtg/2012-11/Serebryany_TSan-MSan.pdf

14

Address Sanitizer

http://www.llvm.org/devmtg/2012-11/Serebryany_TSan-MSan.pdf

15

Thread Sanitizer

#include <thread>

int g_i = 0;
std::mutex g_i_mutex; // protects g_i

void safe_increment()
{
 // std::lock_guard<std::mutex> lock(g_i_mutex);
 ++g_i;
}

int main()
{
 std::thread t1(safe_increment);
 std::thread t2(safe_increment);

 t1.join();
 t2.join();
}

Everything is fine if I uncomment
this line...

16

Thread Sanitizer

$ clang++ -std=c++11 -stdlib=libc++ -fsanitize=thread -O1 -o /tmp/r1 /tmp/r1.cpp
$ /tmp/r1

17

LLVM XRay

Lightweight instrumentation library, add places to patch in instrumentation (generally to functions larger than
some threshold):

Can be extended to do many things, but comes with an “Flight Data-Recorder” Mode:

https://llvm.org/docs/XRay.html

18

LLVM MCA

Using LLVM’s instruction-scheduling infrastructure to analyze programs...

https://llvm.org/docs/CommandGuide/llvm-mca.html

19

Profile-Guided Optimization

https://llvm.org/devmtg/2013-11/slides/Carruth-PGO.pdf

Instrumentation vs. Sampling PGO; for instrumentation:

20

PGO

https://llvm.org/devmtg/2013-11/slides/Carruth-PGO.pdf

Instrumentation vs. Sampling PGO; for sampling:

21

PGO

https://llvm.org/devmtg/2013-11/slides/Carruth-PGO.pdf

22

PGO

https://llvm.org/devmtg/2013-11/slides/Carruth-PGO.pdf

23

Link-Time Optimization

http://llvm.org/devmtg/2016-11/Slides/Amini-Johnson-ThinLTO.pdf

24

LTO

http://llvm.org/devmtg/2016-11/Slides/Amini-Johnson-ThinLTO.pdf

25

LTO

http://llvm.org/devmtg/2016-11/Slides/Amini-Johnson-ThinLTO.pdf

26

LTO

http://llvm.org/devmtg/2016-11/Slides/Amini-Johnson-ThinLTO.pdf

27

LTO

http://llvm.org/devmtg/2016-11/Slides/Amini-Johnson-ThinLTO.pdf

28

A role in exascale? Current/Future HPC vendors are already involved (plus many others)...

LLVM

Apple + Google
(Many millions invested annually)
+ many others (Qualcomm, Sony,

Microsoft, Facebook, Ericcson, etc.)

Intel

Cray

ARM

IBM

NVIDIA
(and PGI)

AMD

Academia, Labs, etc.

29

(https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/201909/20190923_ASCAC-Helland-Barbara-Helland.pdf)

30

ECP ST Projects Developing LLVM-Based Technology

SOLLVE: OpenMP (WBS 2.3.1.13)

Flang: LLVM Fortran Frontend (WBS 2.3.5.06)

Y-Tune: Autotuning (WBS 2.3.2.07)
o Enhancing the implementation of OpenMP in LLVM:

 Developing support for unified memory (e.g., from NVIDIA),
kernel decomposition and pipelining, automated use of local
memory, and other enhancements for accelerators.

 Developing optimizations of OpenMP constructs to reduce
overheads (e.g., from thread startup and barriers).
 Building on LLVM parallel-IR work in collaboration with Intel.

o Using LLVM, Clang, and Flang to prototype new OpenMP features for
standardization.

o Developing an OpenMP test suite, and as a result, testing and
improving the quality of OpenMP in LLVM, Clang, and Flang.

Note: The proxy-apps project (WBS 2.2.6.01) is also enhancing LLVM's test suite.

o Developing extensions to LLVM's intermediate representation (IR) to
represent parallelism.

 Strong collaboration with Intel and several academic groups.
 Parallel IR can target OpenMP's runtime library among others.
 Parallel IR can be targeted by OpenMP, OpenACC, and other

programming models in Clang, Flang, and other frontends.
 Building optimizations on parallel IR to reduce overheads (e.g.,

merging parallel regions and removing redundant barriers).
o Developing support for OpenACC in Clang, prototyping non-volatile

memory features, and integration with Tau performance tools.

o Working with NVIDIA (PGI), ARM, and others to develop an open-
source, production-quality LLVM Fortran frontend.

 Can target parallel IR to support OpenMP (including OpenMP
offloading) and OpenACC.

o Enhancing LLVM to better interface with autotuning tools.
o Enhancing LLVM's polyhedral loop optimizations and the ability to drive

them using autotuning.
o Using Clang, and potentially Flang, for parsing and semantic analysis.

Kitsune: LANL ATDM Dev. Tools (WBS 2.3.2.02)

o Using parallel IR to replace template expansion in FleCSI, Kokkos, RAJA, etc.
o Enhanced parallel-IR optimizations and targeting of various

runtimes/architectures.
o Flang evaluation, testing, and Legion integration, plus other programming-model

enhancements.
o ByFl: Instrumentation-based performance counters using LLVM.PROTEAS: Parallel IR & More (WBS 2.3.2.09)

31

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)

32

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)

33

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)

34

Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)

35

What To Do With OpenACC Code?

36

Optimization of Parallel Programs (OpenMP and Similar) (POC: Johannes Doerfert, ANL)

37

Opportunities for the Future

● Race-Detection Tools and other Sanitizers in HPC
● Scalable Data Collection
● Integration with MPI or other inter-node communication frameworks
● Support on GPUs and other accelerators

● More static analysis, both frontend and optimizer, for HPC
● Support for MPI
● Support for Fortran
● Support for GPUs and other accelerators
● Support for advanced loop optimizations and other user-directed optimizations

● FDR-like capabilities for large-scale HPC applications
● Debugging crashes at scale is hard.

● Integrated dynamic and static performance analysis (e.g., using MCA-like capabilities)
● Better understanding of performance counters
● Understanding of working sets and cache populations
● Support for GPUs and other accelerators

● Better support for LTO and PGO in HPC environments
● Scalabale data collection (for PGO)
● Build-system integration, LTO-enabled libraries, etc.
● Support for GPUs and other accelerators

38

Acknowledgments

Thanks to ALCF, ANL, ECP, DOE, and the LLVM community!

ALCF is supported by DOE/SC under contract DE-AC02-06CH11357.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort
of two U.S. Department of Energy organizations (Office of Science and the National Nuclear Security
Administration) responsible for the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system engineering, and early testbed platforms,
in support of the nation’s exascale computing imperative.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	ECP ST Projects Developing LLVM-Based Technology
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

