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Clang, LLVM, etc.

LLVM/Clang is both a research platform
and a production-quality compiler.

✔ LLVM is a liberally-licensed(*) infrastructure for creating 
compilers, other toolchain components, and JIT 
compilation engines.

✔ Clang is a modern C++ frontend for LLVM
✔ LLVM and Clang will play significant roles in exascale 

computing systems!

(*) Now under the Apache 2 license with the LLVM Exception
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What is LLVM:

LLVM is not a “low-level virtual machine”!

LLVM is a multi-architecture infrastructure for 
constructing compilers and other toolchain 
components.

LLVM IR Architecture-independent
simplification

Architecture-aware
optimization

(e.g. vectorization)

Backends
(Type legalization,

instruction selection,
register allocation, etc.)

Assembly printing,
binary generation, or

JIT execution
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What is Clang:

Clang is a C++ frontend for LLVM...

C++ Source
(C++14, C11, etc.)

Parsing and
semantic analysis

LLVM IR

Code generation

Static analysis

● For basic compilation, Clang 
works just like gcc – using 
clang instead of gcc, or 
clang++ instead of g++, in 
your makefile will likely “just 
work.”

● Clang has a scalable LTO, 
check out: 
https://clang.llvm.org/docs/ThinLTO.html

https://clang.llvm.org/docs/ThinLTO.html
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The core LLVM compiler-infrastructure components are one of the subprojects in the LLVM project.
These components are also referred to as “LLVM.”
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What About Flang?

● Started as a collaboration between DOE and 
NVIDIA/PGI. Now also involves ARM and 
other vendors.

● Flang (f18+runtimes) has been accepted to 
become a part of the LLVM project.

● Two development paths:

Flang based 
on PGI’s 
existing 

frontend (in C).

Production 
ready including 

OpenMP 
support.

f18 – A new 
frontend 
written in 

modern C++.

Parsing, 
semantic 

analysis, etc. 
under active 

development.

Fortran 
runtime 

library and 
vectorized 

math-
function 
library.

LLVM Project
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What About MLIR?

● Started as a part of Google’s TensorFlow 
project.

● MLIR will become part of the LLVM project.
● MLIR is built around the simultaneous 

support of multiple dialects.

Frontends

TensorFlow,
Flang,

etc.

LLVM

MLIR LLVM
Dialect

OpenMP
IR Builder

MLIR OpenMP
Dialect

MLIR
Fortran Dialect

MLIR
Linear-Algebra

DIalect
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Clang Can Compile CUDA!

$ clang++ axpy.cu -o axpy --cuda-gpu-arch=<GPU arch> 

For example:
--cuda-gpu-arch=sm_35

When compiling, you may also need to pass --cuda-path=/path/to/cuda if you didn’t install the CUDA 
SDK into /usr/local/cuda (or a few other “standard” locations).

For more information, see: http://llvm.org/docs/CompileCudaWithLLVM.html

● CUDA is the language used to compile code for NVIDIA GPUs.
● Support now also developed by AMD as part of their HIP project.

Clang's CUDA aims to provide better support for modern C++ than NVIDIA's nvcc.

http://llvm.org/docs/CompileCudaWithLLVM.html
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Existing LLVM Capabilities

● Clang Static Analysis (including now integration with the Z3 SMT solver)

● Clang Warnings and Provided-by-Default Analysis (e.g., MPI-specific warning messages)

● LLVM-based static analysis (using, e.g., optimization remarks)

● LLVM instrumentation-based checking (e.g., UBSan)

● LLVM instrumentation-based checking using Sanitizer libraries (e.g., AddressSanitizer)

● Lightweight instrumentation for performance collection (e.g., Xray)

● Low-level performance analysis (e.g., llvm-mca)

These are not really MPI specific, but uses the “type safety” attributes inspired by this use case:

int MPI_Send(void *buf, int count, MPI_Datatype datatype)

    __attribute__(( pointer_with_type_tag(mpi,1,3) ));

…

#define MPI_DATATYPE_NULL ((MPI_Datatype) 0xa0000000)

#define MPI_FLOAT         ((MPI_Datatype) 0xa0000001)

…
static const MPI_Datatype mpich_mpi_datatype_null __attribute__(( type_tag_for_datatype(mpi,void,must_be_null) )) = 0xa0000000;

static const MPI_Datatype mpich_mpi_float         __attribute__(( type_tag_for_datatype(mpi,float) ))             = 0xa0000001;

See Clang's test/Sema/warn-type-safety-mpi-hdf5.c, test/Sema/warn-type-safety.c and

test/Sema/warn-type-safety.cpp for more examples,

and: http://clang.llvm.org/docs/AttributeReference.html#type-safety-checking

http://clang.llvm.org/docs/AttributeReference.html#type-safety-checking
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MPI-specifc warning messages

These are not really MPI specific, but uses the “type safety” attributes inspired by this use case:

int MPI_Send(void *buf, int count, MPI_Datatype datatype)

    __attribute__(( pointer_with_type_tag(mpi,1,3) ));

…

#define MPI_DATATYPE_NULL ((MPI_Datatype) 0xa0000000)

#define MPI_FLOAT         ((MPI_Datatype) 0xa0000001)

…
static const MPI_Datatype mpich_mpi_datatype_null __attribute__(( type_tag_for_datatype(mpi,void,must_be_null) )) = 0xa0000000;

static const MPI_Datatype mpich_mpi_float         __attribute__(( type_tag_for_datatype(mpi,float) ))             = 0xa0000001;

See Clang's test/Sema/warn-type-safety-mpi-hdf5.c, test/Sema/warn-type-safety.c and

test/Sema/warn-type-safety.cpp for more examples,

and: http://clang.llvm.org/docs/AttributeReference.html#type-safety-checking

These are not really MPI specific, but uses the “type safety” attributes inspired by this use case:

int MPI_Send(void *buf, int count, MPI_Datatype datatype)

    __attribute__(( pointer_with_type_tag(mpi,1,3) ));

…

#define MPI_DATATYPE_NULL ((MPI_Datatype) 0xa0000000)

#define MPI_FLOAT         ((MPI_Datatype) 0xa0000001)

…
static const MPI_Datatype mpich_mpi_datatype_null __attribute__(( type_tag_for_datatype(mpi,void,must_be_null) )) = 0xa0000000;

static const MPI_Datatype mpich_mpi_float         __attribute__(( type_tag_for_datatype(mpi,float) ))             = 0xa0000001;

See Clang's test/Sema/warn-type-safety-mpi-hdf5.c, test/Sema/warn-type-safety.c and

test/Sema/warn-type-safety.cpp for more examples,

and: http://clang.llvm.org/docs/AttributeReference.html#type-safety-checking

http://clang.llvm.org/docs/AttributeReference.html#type-safety-checking
http://clang.llvm.org/docs/AttributeReference.html#type-safety-checking
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Optimization Reporting - Design Goals

To get information from the backend (LLVM) to the frontend (Clang, etc.)

✔ To enable the backend to generate diagnostics and informational messages for display to users. 

✔ To enable these messages to carry additional “metadata” for use by knowledgeable frontends/tools 

✔ To enable the programmatic use of these messages by tools (auto-tuners, etc.)

✔ To enable plugins to generate their own unique messages

See also: http://llvm.org/docs/Vectorizers.html#diagnostics

http://llvm.org/docs/Vectorizers.html#diagnostics
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Sanitizers

The sanitizers (some now also supported by GCC) – Instrumentation-based debugging
● Checks get compiled in (and optimized along with the rest of the code) – Execution speed an order of 

magnitude or more faster than Valgrind
● You need to choose which checks to run at compile time:

● Address sanitizer: -fsanitize=address – Checks for out-of-bounds memory access, use after free, etc.: 
http://clang.llvm.org/docs/AddressSanitizer.html

● Leak sanitizer: Checks for memory leaks; really part of the address sanitizer, but can be enabled in a 
mode just to detect leaks with -fsanitize=leak: http://clang.llvm.org/docs/LeakSanitizer.html

● Memory sanitizer: -fsanitize=memory – Checks for use of uninitialized memory: 
http://clang.llvm.org/docs/MemorySanitizer.html

● Thread sanitizer: -fsanitize=thread – Checks for race conditions: 
http://clang.llvm.org/docs/ThreadSanitizer.html

● Undefined-behavior sanitizer: -fsanitize=undefined – Checks for the execution of undefined behavior: 
http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

● Efficiency sanitizer [Recent development]: -fsanitize=efficiency-cache-frag, -fsanitize=efficiency-working-
set (-fsanitize=efficiency-all to get both)

And there's more, check out http://clang.llvm.org/docs/ and Clang's 
include/clang/Basic/Sanitizers.def for more information.

http://clang.llvm.org/docs/AddressSanitizer.html
http://clang.llvm.org/docs/LeakSanitizer.html
http://clang.llvm.org/docs/MemorySanitizer.html
http://clang.llvm.org/docs/ThreadSanitizer.html
http://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
http://clang.llvm.org/docs/
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Address Sanitizer

http://www.llvm.org/devmtg/2012-11/Serebryany_TSan-MSan.pdf
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Address Sanitizer

http://www.llvm.org/devmtg/2012-11/Serebryany_TSan-MSan.pdf
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Thread Sanitizer

#include <thread>

int g_i = 0;
std::mutex g_i_mutex;  // protects g_i
 
void safe_increment()
{
    // std::lock_guard<std::mutex> lock(g_i_mutex);
    ++g_i;
}
 
int main()
{
    std::thread t1(safe_increment);
    std::thread t2(safe_increment);
 
    t1.join();
    t2.join();
}

Everything is fine if I uncomment
this line...
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Thread Sanitizer

$ clang++ -std=c++11 -stdlib=libc++ -fsanitize=thread -O1 -o /tmp/r1 /tmp/r1.cpp
$ /tmp/r1



17

LLVM XRay

Lightweight instrumentation library, add places to patch in instrumentation (generally to functions larger than 
some threshold):

Can be extended to do many things, but comes with an “Flight Data-Recorder” Mode:

https://llvm.org/docs/XRay.html
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LLVM MCA

Using LLVM’s instruction-scheduling infrastructure to analyze programs...

https://llvm.org/docs/CommandGuide/llvm-mca.html
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Profile-Guided Optimization

https://llvm.org/devmtg/2013-11/slides/Carruth-PGO.pdf

Instrumentation vs. Sampling PGO; for instrumentation:
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PGO

https://llvm.org/devmtg/2013-11/slides/Carruth-PGO.pdf

Instrumentation vs. Sampling PGO; for sampling:
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PGO

https://llvm.org/devmtg/2013-11/slides/Carruth-PGO.pdf
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PGO

https://llvm.org/devmtg/2013-11/slides/Carruth-PGO.pdf
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Link-Time Optimization

http://llvm.org/devmtg/2016-11/Slides/Amini-Johnson-ThinLTO.pdf
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LTO

http://llvm.org/devmtg/2016-11/Slides/Amini-Johnson-ThinLTO.pdf
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LTO

http://llvm.org/devmtg/2016-11/Slides/Amini-Johnson-ThinLTO.pdf



26

LTO

http://llvm.org/devmtg/2016-11/Slides/Amini-Johnson-ThinLTO.pdf
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LTO

http://llvm.org/devmtg/2016-11/Slides/Amini-Johnson-ThinLTO.pdf
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A role in exascale? Current/Future HPC vendors are already involved (plus many others)...

LLVM

Apple + Google
(Many millions invested annually)
+ many others (Qualcomm, Sony,

Microsoft, Facebook, Ericcson, etc.)

Intel

Cray

ARM

IBM

NVIDIA
(and PGI)

AMD

Academia, Labs, etc.
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(https://science.osti.gov/-/media/ascr/ascac/pdf/meetings/201909/20190923_ASCAC-Helland-Barbara-Helland.pdf)
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ECP ST Projects Developing LLVM-Based Technology

SOLLVE: OpenMP (WBS 2.3.1.13) 

Flang: LLVM Fortran Frontend (WBS 2.3.5.06)

Y-Tune: Autotuning (WBS 2.3.2.07)
o Enhancing the implementation of OpenMP in LLVM:

 Developing support for unified memory (e.g., from NVIDIA), 
kernel decomposition and pipelining, automated use of local 
memory, and other enhancements for accelerators.

 Developing optimizations of OpenMP constructs to reduce 
overheads (e.g., from thread startup and barriers).
 Building on LLVM parallel-IR work in collaboration with Intel.

o Using LLVM, Clang, and Flang to prototype new OpenMP features for 
standardization.

o Developing an OpenMP test suite, and as a result, testing and 
improving the quality of OpenMP in LLVM, Clang, and Flang.

Note: The proxy-apps project (WBS 2.2.6.01) is also enhancing LLVM's test suite.

o Developing extensions to LLVM's intermediate representation (IR) to 
represent parallelism.

 Strong collaboration with Intel and several academic groups.
 Parallel IR can target OpenMP's runtime library among others.
 Parallel IR can be targeted by OpenMP, OpenACC, and other 

programming models in Clang, Flang, and other frontends.
 Building optimizations on parallel IR to reduce overheads (e.g., 

merging parallel regions and removing redundant barriers).
o Developing support for OpenACC in Clang, prototyping non-volatile 

memory features, and integration with Tau performance tools.

o Working with NVIDIA (PGI), ARM, and others to develop an open-
source, production-quality LLVM Fortran frontend.

 Can target parallel IR to support OpenMP (including OpenMP 
offloading) and OpenACC.

o Enhancing LLVM to better interface with autotuning tools.
o Enhancing LLVM's polyhedral loop optimizations and the ability to drive 

them using autotuning.
o Using Clang, and potentially Flang, for parsing and semantic analysis.

Kitsune: LANL ATDM Dev. Tools (WBS 2.3.2.02)

o Using parallel IR to replace template expansion in FleCSI, Kokkos, RAJA, etc.
o Enhanced parallel-IR optimizations and targeting of various 

runtimes/architectures.
o Flang evaluation, testing, and Legion integration, plus other programming-model 

enhancements.
o ByFl: Instrumentation-based performance counters using LLVM.PROTEAS: Parallel IR & More (WBS 2.3.2.09)
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Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)
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Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)
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Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)
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Loop-Optimization Pragmas and Infrastructure (POC: Michael Kruse, ANL)
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What To Do With OpenACC Code?
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Optimization of Parallel Programs (OpenMP and Similar) (POC: Johannes Doerfert, ANL)
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Opportunities for the Future

● Race-Detection Tools and other Sanitizers in HPC
● Scalable Data Collection
● Integration with MPI or other inter-node communication frameworks
● Support on GPUs and other accelerators

● More static analysis, both frontend and optimizer, for HPC
● Support for MPI
● Support for Fortran
● Support for GPUs and other accelerators
● Support for advanced loop optimizations and other user-directed optimizations

● FDR-like capabilities for large-scale HPC applications
● Debugging crashes at scale is hard.

● Integrated dynamic and static performance analysis (e.g., using MCA-like capabilities)
● Better understanding of performance counters
● Understanding of working sets and cache populations
● Support for GPUs and other accelerators

● Better support for LTO and PGO in HPC environments
● Scalabale data collection (for PGO)
● Build-system integration, LTO-enabled libraries, etc.
● Support for GPUs and other accelerators
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