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PaRSEC, task-based programming
• Focus on data dependencies, data 

flows, and tasks
• Don’t develop for an architecture but 

for a portability layer
• Let the runtime deal with the 

hardware characteristics
• But provide as much user control as possible

• StarSS, StarPU, Swift, Parallex, 
Quark, Kaapi, DuctTeip, ..., and 
PaRSEC
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PaRSEC
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PaRSEC: a generic 
runtime system for 
asynchronous, 
architecture aware 
scheduling of fine-
grained tasks on 
distributed many-
core heterogeneous 
architectures.
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PaRSEC Profiling Tools
•Sits at the core of the performance profiling system
•Events as identifiable entities
•Scalable for many- thread environments
oOne profiling stream for each thread
oAdditional helping threads in charge of I/O, memory 

allocators, compactors, …
oAdditional buffers allocated in advance 

Trace 
Collection 

Framework 

•The Trace Collection Framework is used within the 
PaRSEC runtime through the PaRSEC INStrumentation
(PINS) interface 

•PINS registers callbacks for all the important steps of a 
task or communication life cycle

•Dynamically configurable to generate only the events 
pertinent to the run

PINS: PaRSEC
INStrumentati

on
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PaRSEC Profiling Tools
•It is necessary to connect information with the actual 

DAG of tasks
•Automatically generate DOT file each with a partial view 

of the DAG
oCollection of the DAG can be done offline
oOne DOT file per process with tools to concatenate the 

different DOT files

Dependency 
Analysis

• The binary format of trace files is not exposed to the user, needs to 
be a portable and exploitable file format

• Hierarchical Data Format (HDF5) following the structure required by 
the popular Pandas Library 

• Tools to take the generated trace and convert it into a Gantt chart
• Provides a library to read the DOT files that are generated into a 

NetworkX [29] representation

Trace 
Conversion 

Tools
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PaRSEC Profiling Tools
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$> python
>>> import pandas as pd 
>>> t = pd.HDFStore('dpotrf.h5’)
>>> t.event_types
ACTIVATE_CB                  6
Device delegate             1
MPI_ACTIVATE                2
MPI_DATA_CTL               3
MPI_DATA_PLD_RCV      5
MPI_DATA_PLD_SND     4
PUT_CB                          7
TASK_MEMORY              0
potrf_dgemm 8
potrf_dpotrf 11
potrf_dsyrk 9
potrf_dtrsm 10
dtype: int64
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TLR Cholesky Factorization
The Cholesky factorization of an N * N real symmetric, positive-definite matrix 
A has the form: A = LLT , where L is an N ⇥ N real lower triangular matrix with 
positive diagonal elements. 

v Apparently dense matrices arising in scientific 
applications, such as climate/weather 
forecasting in computational statistics, seismic 
imaging in earth science, structural and 
vibrational analysis in material science.

v Common properties: 
o Symmetric, positive-definite matrix 
o (Apparently) dense matrices
o Often data-sparse, Decay of parameter 

correlations with distance 
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TLR Cholesky Factorization

v Dense matrices might be compressed:
o Cholesky factorization (for 

distributed-memory architectures)
o Tile low rank (TLR) matrix format
o Significantly less memory 
o Preserving the accuracy 

requirements of the scientific 
application 

o Huge performance improvement via 
cutting down flops



TLR Cholesky Factorization
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Kernel Dense Cholesky TLR Cholesky
POTRF 1/3 * nb^3 1/3 * nb^3
TRSM nb^3 nb^2 * rank

SYRK/LR_SYRK nb^3 2 * nb^2 * rank + 4 * nb * rank^2
GEMM/LR_GEMM 2 * nb^3 36 * nb * rank^2

Total O(N^3) O(N^2 * rank)

for p = 1 to NT do 
POTRF(D(p,p)) 
for i = p+1 to NT do

TRSM(V(i,p), D(p,p))
for j = p+1 to NT 

LR_SYRK(D(j,j), U(j,p), V(j,p)) 
for i = j+1 to NT do

LR_GEMM(U(i,p), V(i,p), U(j,p), V(j,p), U(i,j), V(i,j), acc) 

A serial and 
incompressible 
critical path of TLR 
Cholesky: (NT -1 ) * 
(POTRF + TRSM + 
SYRK) + POTRF.
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State-of-the-art  

• Shaheen II, a Cray 
XC40 system, which 
has 6,174 compute 
nodes;

• The accuracy 
threshold of 10−8, 
which ultimately 
yields absolute 
numerical error of 
order 10−9;

st-2D-sqexpSyn-2D



Experiments
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PaRSEC and its 
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tools
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Optimization 1: Optimal Tile Size 
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v Tile size plays a significant role in TLR Cholesky 

v The profiling tools in PaRSEC gets in: 
o kernel execution time varies for each task, in 

terms of the number of operations
o Set special event “ops_count” to gather the 

operaions count for tasks in the critical path 
and tasks off the critical path

v Operation balance between tiles on and off critical path.
v Assume N is the matrix size, node is the number of 

nodes, k is the average rank of tiles off diagonal, then the 
best tile size nb can be approximated:



Evaluation: Hybrid Data Distributions 
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• Imbalance: memory and computation
• PaRSEC’s profiling system could provide the 

execution time for each process, as well as each 
thread, from which we extract the workload for each 
process to show load balancing. 

2DBCDD Band distribution,
band_size = 1

Band distribution,
band_size = 2



Evaluation: Hybrid Data Distributions 
No. of Nodes Matrix Size Memory Reduced (GB) 

16 1080000 4.374 

16 2160000 8.748 

16 4320000 17.496 
64 2160000 5.103

64 4320000 10.206

64 6480000 20.412 
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Without the hybrid data distributions With the hybrid data distributions 

• We use the event 
memory in the profiling 
system to detail 
memory usage of both 
static matrix allocation 
and dynamic temporary 
buffers. 

• PaRSEC’s profiling 
system also provides 
the execution time for 
each process, as well 
as each thread, from 
which we extract the 
workload for each 
process to show load 
balancing. 



Evaluation: Reduce Communication Volume
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Initial rank 
distributions (i.e., 
before factorization) 
on the left and the 
difference between 
initial and final 
ranks (i.e., after 
factorization) on the 
right; the matrix size 
is 1080K × 1080K, 
and the tile size is 
2,700; up for 2D 
problem, blew for 
3D problem

v We used the PaRSEC
tracing framework API to 
register a new, 
application-specific type 
of event, and at the 
execution of each task, 
we logged the rank of 
the tile on which the task 
was working.

v Once the trace was 
converted, we then 
wrote application-
specific scripts to analyze 
the HDF5 file, and 
produce the figures. 



Evaluation: Novel Lookahead 
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Time between data is ready and TRSM starts for st-2D-
sqexp. Left, without lookahead; right, with lookahead of 5; 
each point represents one TRSM; matrix has 100 × 100 tiles 

o We profiled the execution to ensure 
the critical path is respected, i.e. as 
soon as the data is read PaRSEC
enables the critical tasks first. 

o To be able to compute the average 
time it takes for data to be 
produced on one node and 
consumed on another, we need to 
connect the task termination, 
network activation, payload 
emission, and remote task 
execution events.

o This is provided by the PaRSEC
profiling system through a 
combination of the trace 
information and the DOT file. 



Evaluation: Hierarchical POTRF 
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Impact of 
Hierarchical 
POTRF: top, 
execution time on 
a single node; 
bottom, resource 
occupancy of 540K 
× 540K matrix on a 
3 × 3 process grid 
with a tile size of 
2,700 

o We exploited the basic timing 
information produced by the 
tracing system

o Plus statistical packages 
provided by pandas and 
NumPy to compute our 
metrics: we compute the 
occupancy of the 
computational resources 
during the original run and 
then during the hierarchical 
POTRF run. 
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Incremental Effects
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Comparison with State-of-the-art  
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3D Application and extreme-scale runs
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Conclusion

• Present the profiling system of PaRSEC: trace collection framework, 
PINS, Dependency Analysis and Trace;
• Demonstrate the performance analysis using profiling system in 

PaRSEC to show optimization footprints of TLR Cholesky factorization 
from data distribution, communication-reducing and synchronization-
reducing perspectives;
• Thanks to the optimizations hinted by the profiling system, the new 

TLR Cholesky factorization achieves an 8X performance speedup over 
existing state-of-the art implementations on massively parallel 
supercomputers, solves 3D problem in climate and weather 
prediction applications and up to 42M geospatial locations on
130,000 cores.
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Questions?


