
Performance Analysis of Tile Low-Rank
Cholesky Factorization Using PaRSEC

Instrumentation Tools

Qinglei Cao, Yu Pei, Thomas Herault, Kadir
Akbudak, Aleksandr Mikhalev, George Bosilca,
Hatem Ltaief, David Keyes, and Jack Dongarra

Protools19

PaRSEC, task-based programming
• Focus on data dependencies, data

flows, and tasks
• Don’t develop for an architecture but

for a portability layer
• Let the runtime deal with the

hardware characteristics
• But provide as much user control as possible

• StarSS, StarPU, Swift, Parallex,
Quark, Kaapi, DuctTeip, ..., and
PaRSEC

Ap
p

Data
Distrib. Sched. Comm

Memory
Manager

Heterogeneity
ManagerRu

nt
im

e

PaRSEC

3

PaRSEC: a generic
runtime system for
asynchronous,
architecture aware
scheduling of fine-
grained tasks on
distributed many-
core heterogeneous
architectures.

PaRSEC

Easy
to Use

Programming

Performance

Debug

4

PaRSEC Profiling Tools
•Sits at the core of the performance profiling system
•Events as identifiable entities
•Scalable for many- thread environments
oOne profiling stream for each thread
oAdditional helping threads in charge of I/O, memory

allocators, compactors, …
oAdditional buffers allocated in advance

Trace
Collection

Framework

•The Trace Collection Framework is used within the
PaRSEC runtime through the PaRSEC INStrumentation
(PINS) interface

•PINS registers callbacks for all the important steps of a
task or communication life cycle

•Dynamically configurable to generate only the events
pertinent to the run

PINS: PaRSEC
INStrumentati

on

5

PaRSEC Profiling Tools
•It is necessary to connect information with the actual

DAG of tasks
•Automatically generate DOT file each with a partial view

of the DAG
oCollection of the DAG can be done offline
oOne DOT file per process with tools to concatenate the

different DOT files

Dependency
Analysis

• The binary format of trace files is not exposed to the user, needs to
be a portable and exploitable file format

• Hierarchical Data Format (HDF5) following the structure required by
the popular Pandas Library

• Tools to take the generated trace and convert it into a Gantt chart
• Provides a library to read the DOT files that are generated into a

NetworkX [29] representation

Trace
Conversion

Tools

6

PaRSEC Profiling Tools

7

$> python
>>> import pandas as pd
>>> t = pd.HDFStore('dpotrf.h5’)
>>> t.event_types
ACTIVATE_CB 6
Device delegate 1
MPI_ACTIVATE 2
MPI_DATA_CTL 3
MPI_DATA_PLD_RCV 5
MPI_DATA_PLD_SND 4
PUT_CB 7
TASK_MEMORY 0
potrf_dgemm 8
potrf_dpotrf 11
potrf_dsyrk 9
potrf_dtrsm 10
dtype: int64

8

TLR Cholesky Factorization
The Cholesky factorization of an N * N real symmetric, positive-definite matrix
A has the form: A = LLT , where L is an N ⇥ N real lower triangular matrix with
positive diagonal elements.

v Apparently dense matrices arising in scientific
applications, such as climate/weather
forecasting in computational statistics, seismic
imaging in earth science, structural and
vibrational analysis in material science.

v Common properties:
o Symmetric, positive-definite matrix
o (Apparently) dense matrices
o Often data-sparse, Decay of parameter

correlations with distance

9

TLR Cholesky Factorization

v Dense matrices might be compressed:
o Cholesky factorization (for

distributed-memory architectures)
o Tile low rank (TLR) matrix format
o Significantly less memory
o Preserving the accuracy

requirements of the scientific
application

o Huge performance improvement via
cutting down flops

TLR Cholesky Factorization

10

Kernel Dense Cholesky TLR Cholesky
POTRF 1/3 * nb^3 1/3 * nb^3
TRSM nb^3 nb^2 * rank

SYRK/LR_SYRK nb^3 2 * nb^2 * rank + 4 * nb * rank^2
GEMM/LR_GEMM 2 * nb^3 36 * nb * rank^2

Total O(N^3) O(N^2 * rank)

for p = 1 to NT do
POTRF(D(p,p))
for i = p+1 to NT do

TRSM(V(i,p), D(p,p))
for j = p+1 to NT

LR_SYRK(D(j,j), U(j,p), V(j,p))
for i = j+1 to NT do

LR_GEMM(U(i,p), V(i,p), U(j,p), V(j,p), U(i,j), V(i,j), acc)

A serial and
incompressible
critical path of TLR
Cholesky: (NT -1) *
(POTRF + TRSM +
SYRK) + POTRF.

11

State-of-the-art

• Shaheen II, a Cray
XC40 system, which
has 6,174 compute
nodes;

• The accuracy
threshold of 10−8,
which ultimately
yields absolute
numerical error of
order 10−9;

st-2D-sqexpSyn-2D

Experiments

12

PaRSEC and its
instrumentation

tools

Optimal
tile size

Band
distributio

n

Communic
ation

volume
reduction

Novel
lookahead

Hierarchic
al POTRF

13

Optimization 1: Optimal Tile Size

●

●

● ●

● ●
●

●

●

●

50

100

150

200

250

2500 5000 7500
Tile Size

Ti
m

e
(s

)

0

2000

4000

1.08 2.16 4.32 6.48 8.64 10.8 15.12
Matrix Size (106)

Ti
le

 S
ize

Approximated Optimal
Experimental Optimal

Syn-2D, 16
nodes, 2M

st-2D-sqexp,
256 nodes

v Tile size plays a significant role in TLR Cholesky

v The profiling tools in PaRSEC gets in:
o kernel execution time varies for each task, in

terms of the number of operations
o Set special event “ops_count” to gather the

operaions count for tasks in the critical path
and tasks off the critical path

v Operation balance between tiles on and off critical path.
v Assume N is the matrix size, node is the number of

nodes, k is the average rank of tiles off diagonal, then the
best tile size nb can be approximated:

Evaluation: Hybrid Data Distributions

14

• Imbalance: memory and computation
• PaRSEC’s profiling system could provide the

execution time for each process, as well as each
thread, from which we extract the workload for each
process to show load balancing.

2DBCDD Band distribution,
band_size = 1

Band distribution,
band_size = 2

Evaluation: Hybrid Data Distributions
No. of Nodes Matrix Size Memory Reduced (GB)

16 1080000 4.374

16 2160000 8.748

16 4320000 17.496
64 2160000 5.103

64 4320000 10.206

64 6480000 20.412

15

Without the hybrid data distributions With the hybrid data distributions

• We use the event
memory in the profiling
system to detail
memory usage of both
static matrix allocation
and dynamic temporary
buffers.

• PaRSEC’s profiling
system also provides
the execution time for
each process, as well
as each thread, from
which we extract the
workload for each
process to show load
balancing.

Evaluation: Reduce Communication Volume

16

Initial rank
distributions (i.e.,
before factorization)
on the left and the
difference between
initial and final
ranks (i.e., after
factorization) on the
right; the matrix size
is 1080K × 1080K,
and the tile size is
2,700; up for 2D
problem, blew for
3D problem

v We used the PaRSEC
tracing framework API to
register a new,
application-specific type
of event, and at the
execution of each task,
we logged the rank of
the tile on which the task
was working.

v Once the trace was
converted, we then
wrote application-
specific scripts to analyze
the HDF5 file, and
produce the figures.

Evaluation: Novel Lookahead

17

Time between data is ready and TRSM starts for st-2D-
sqexp. Left, without lookahead; right, with lookahead of 5;
each point represents one TRSM; matrix has 100 × 100 tiles

o We profiled the execution to ensure
the critical path is respected, i.e. as
soon as the data is read PaRSEC
enables the critical tasks first.

o To be able to compute the average
time it takes for data to be
produced on one node and
consumed on another, we need to
connect the task termination,
network activation, payload
emission, and remote task
execution events.

o This is provided by the PaRSEC
profiling system through a
combination of the trace
information and the DOT file.

Evaluation: Hierarchical POTRF

18

●

●●●●●
●
●●●●

●

●

●

25

50

75

100

1−100 100−130 131−160 161−200
Panel Range

O
cc

up
an

cy

h−POTRF
POTRF

●● ●● ●● ●● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

0
2
4
6
8

2000 4000 6000 8000 10000
Tile Size

Ti
m

e
(s

)

●

●

h−POTRF
POTRF

Impact of
Hierarchical
POTRF: top,
execution time on
a single node;
bottom, resource
occupancy of 540K
× 540K matrix on a
3 × 3 process grid
with a tile size of
2,700

o We exploited the basic timing
information produced by the
tracing system

o Plus statistical packages
provided by pandas and
NumPy to compute our
metrics: we compute the
occupancy of the
computational resources
during the original run and
then during the hierarchical
POTRF run.

19

Incremental Effects

100
200
400
800

2000
4000
8000

12000
Ti

m
e

(s
)

Type−Nodes
NONE−16
NONE−32
NONE−64
NONE−128
NONE−256

B−16
B−32
B−64
B−128
B−256

0
20
40

1.08 2.16 3.24 4.32 5.4 6.48 7.56 8.64 9.72
(a) Impact of Load Balancing

%

100
200
400
800

2000
4000
8000

12000

Ti
m

e
(s

)

Type−Nodes
B−16
B−32
B−64
B−128
B−256

BS−16
BS−32
BS−64
BS−128
BS−256

0
20
40

1.08 2.16 3.24 4.32 5.4 6.48 7.56 8.64 9.72
(b) Impact of Reducing Communication Volume

%

100
200
400
800

2000
4000
8000

12000

Ti
m

e
(s

)

Type−Nodes
BS−16
BS−32
BS−64
BS−128
BS−256

BSL−16
BSL−32
BSL−64
BSL−128
BSL−256

0
20
40

1.08 2.16 3.24 4.32 5.4 6.48 7.56 8.64 9.72
(c) Impact of Lookahead

%

100
200
400
800

2000
4000
8000

12000

Ti
m

e
(s

)

Type−Nodes
BSL−16
BSL−32
BSL−64
BSL−128
BSL−256

BSLH−16
BSLH−32
BSLH−64
BSLH−128
BSLH−256

0
20
40

1.08 2.16 3.24 4.32 5.4 6.48 7.56 8.64 9.72
(d) Impact of Hierarchical POTRF

%

Matrix Size (106)

St-3D-
sqexp

20

Comparison with State-of-the-art

100
200
400
800

1600
3200
6400

3 6 9
Matrix Size (106)

Ti
m

e
(s

)

Library−Nodes
HiCMA−16
HiCMA−32
HiCMA−64
HiCMA−128
HiCMA−256
HiCMA−512

Lorapo−16
Lorapo−32
Lorapo−64
Lorapo−128
Lorapo−256
Lorapo−512

100

200

400

800

1600

3200

6400

3 6 9
Matrix Size (106)

Ti
m

e
(s

)

Library−Nodes
HiCMA−16
HiCMA−32
HiCMA−64
HiCMA−128
HiCMA−256
HiCMA−512

Lorapo−16
Lorapo−32
Lorapo−64
Lorapo−128
Lorapo−256
Lorapo−512

Syn-2D

st-2D-sqexp

21

3D Application and extreme-scale runs

●

●

●
●● ●●

●
● ●

●●

●

●

16
16

32 3264 64
128

128
256 256

5121024
1024

4096

4000

8000

16000

32000

65000
86000

0 10 20 30 40
Matrix Size (106)

Ti
m

e
(s

)

●
●

st−3D−sqexp
st−2D−sqexp

st-3D-sqexp

The largest matrices
that fit in memory up
to 4096 nodes for st-
3D-sqexp and 1024
nodes for st-2D-sqexp

Conclusion

• Present the profiling system of PaRSEC: trace collection framework,
PINS, Dependency Analysis and Trace;
• Demonstrate the performance analysis using profiling system in

PaRSEC to show optimization footprints of TLR Cholesky factorization
from data distribution, communication-reducing and synchronization-
reducing perspectives;
• Thanks to the optimizations hinted by the profiling system, the new

TLR Cholesky factorization achieves an 8X performance speedup over
existing state-of-the art implementations on massively parallel
supercomputers, solves 3D problem in climate and weather
prediction applications and up to 42M geospatial locations on
130,000 cores.

22

23

Questions?

